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1 Executive Summary 

This report covers the initial DARPA DTN Phase 3 activities as JPL provided Core 
Engineering Support to the DARPA DTN Program, and then further details the 
culmination of the Phase 3 Program with a systematic development, integration and 
test of a disruption-tolerant C2 Situation Awareness (SA) system that may be 
transitioned to the USMC and deployed in the near future. The system developed and 
tested was a SPAWAR/JPL-developed Common Operating Picture Fusion Tool 
called the Software Interoperability Environment (SIE), running over Disruption 
Tolerant Networking (DTN) protocols provided by BBN and MITRE, which 
effectively extends the operational range of SIE from normal fully-connected internet 
environments to the mobile tactical edges of the battlefield network. 

 

The field and laboratory tests conducted showed that DTN provides significant 
advantages by enabling 100% of the SA data to be delivered to mobile, often 
disconnected laptops, as contrasted with the traditional internet-based systems that 
failed to provide the necessary service to the tactical edge network. 

 

JPL acted as the integrators of the system, and supported SPAWAR in their conduct 
of the tests. SPAWAR, BBN and MITRE did the detailed analysis of their portions of 
the protocol stack. This report summarizes the tests, discusses qualitative results, our 
observations, and provides details of the JPL lab configuration, Qualnet simulation 
software models and SharedNet log analysis tools.  
 

2 Background 

This report details the scope, activities and technical results achieved by the Jet 
Propulsion Laboratory under Task Order 98-9538. This Task Order enabled JPL to 
provide DARPA with Core Engineering Support for Disruption Tolerant Networking 
activities in Phase 3 of the DARPA DTN program. 

 

Phase 3 of this program addressed the integration of the Phase 2 technologies into a 
single framework that meets military needs, and prepared for large-scale 
demonstrations of the DTN technology.  

 

During Phase 2, the DTN specifications matured, a stable reference implementation 
of the DTN bundle protocol was developed, and routing and security mechanisms 
were tested in laboratory conditions and small-scale field demonstrations.  

 

During Phase 3, JPL continued work on protocol standardization activities with the 
DTN Research Group (DTNRG), investigated various simulation methods to enable 
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large-scale assessment of routing algorithms, and integrated and tested a DTN-based 
Command and Control (C2) system for use by the USMC in tactical environments. 
This integration effort combined software written during Phase 3 by BBN and 
MITRE, JPL-developed SharedNet software and a Software Interoperability 
Environment system developed by the Space and Naval Warfare Systems Center, San 
Diego (SSC San Diego, or SPAWAR.) 

 

This final report will cover both the standardization and simulation activities in the 
early part of Phase 3, as well as detail the integration and test activities in support of 
the USMC C2 system. 

 

The testing and demonstration of the USMC C2 system was undertaken with the full 
participation of SPAWAR, BBN and MITRE. The overall results of the system field 
and laboratory testing and comparison to legacy systems will be written by 
SPAWAR. The performance of the DTN Bundle Protocol Agent, its DR routing 
algorithms and the effectiveness of the NACK-Oriented Reliable Multicast (NORM) 
layer will be reported on in detail by the SPAWAR, BBN and MITRE teams. 

 

This report will focus on the JPL integration and test activities (in particular the 
Protocol Technology Lab configuration and support for field and lab testing), and the 
overall observed benefits of DTN in the tests we conducted. 

 

2.1 Description of Work 

 

The work conducted for DAPRA during Phase 3 of the DARPA DTN program was 
based on the following items in the Task Order: 

 

3.1.1 TO 98-9538 Scope of Work – Early Part of Phase 3 (Commencing September 
2008) 

 

The original Phase 3 tasks were to: 

a) Continue to support the development of the controlling DTN architectural and 
protocol specifications and thus guide the overall progressive evolution of the 
technology.  

b) Participate in the continued testing and development of the DTN API 
specification being conducted under MITRE leadership. 

c) Maintain Header Compression software, and develop an RFC for DTN HC. 

d) Maintain DARPA-DTN version of the JPL SDR and AMS software and 
provide assistance in its use. 
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e) Provide a large-scale simulation of hundreds of DTN nodes on a 
supercomputer cluster for validation/ scalability checks of routing methods 
planned for Phase 3 demos. 

 

3.1.2 TO 98-9538 Scope of Work – Final Part of Phase 3 (Commencing June 2009) 

 

In Summer of 2009, the Task Order was revised to focus on the SPAWAR 
demonstration & tests. The salient tasks included: 

a) The Core Engineering Support team will support the Space and Naval 
Warfare Systems (SPAWAR) Command demonstration of the Software 
Integration Environment / Shared Net C2 system (SIE/SN) over the DTN 
network. 

b) Integration of the JPL SharedNet software with BBN's BPA DTN software 
during Spiral 1 (software integration) 

c) Test operation of integrated SIE/SN/BPA software in multimode topologies to 
emulate the tactical environment to be demonstrated by SPAWAR during 
Spiral 2 (Field testing). 

d) Assist SPAWAR in the integration and testing in their lab and in the field 
environment during Spiral 2. 

e) Assist SPAWAR in Marine Corps Tactical Systems Support Activity 
(MCTSSA) testing and final operational reports to document the use of DTN 
and the performance of the SIE/SN/BPA software in the tactical environment. 

 

3 Results and Accomplishments 

3.1 Early Phase 3 work 

3.1.1 Accomplishments - Early Part of Phase 3 (Commencing September 2008) 

 

a) During Phase 3, JPL  authored/coauthored the following Internet Research 
Task Force RFCs as part of the DTN Standardization effort: 

   RFC 5325 - Licklider Transmission Protocol – Motivation 

   RFC 5326 - Licklider Transmission Protocol – Specification 

   RFC 5327 - Licklider Transmission Protocol – Security Extensions 

 

 In addition, Internet Drafts were published to include: 

   irtf-dtnrg-cbhe-04 – Compressed Bundle Header Encoding 

   draft-burleigh-dtnrg-cgr-00 - Contact Graph Routing  
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   draft-irtf-dtnrg-ecos-00 - Bundle Protocol Extended Class Of Service 
(ECOS) 

   draft-irtf-dtnrg-dtn-uri-scheme-00 - The DTN URI Scheme 

 

b) During Phase 3, JPL participated in technical test and development of the 
DTN APIs as implemented by the DTNRG DTN2, BBN's BPA, and the JPL 
Interplanetary Overlay (ION) DTN bundle agent, and interoperability testing 
was conducted. This included participation in the July 29-30, 2009 DTNRG 
DisConnectathon. 

 

c) JPL developed and maintained the Header Compression software known as 
CBHE. Compressed Bundle Header Encoding (CBHE) is a convention by 
which Delay-Tolerant Networking (DTN) Bundle Protocol (BP) [RFC5050] 
“convergence-layer adapters” may represent endpoint identifiers in a 
compressed form within the primary blocks of bundles, provided those 
endpoint identifiers conform to the structure prescribed by this convention.  It 
enables the “dictionary” of ASCII-text endpoint ID strings to be omitted 
altogether from the primary block of a bundle, greatly reducing the size of the 
primary block.  This reduction in bundle size can be significant, especially 
when the bundle's payload is relatively small, as is anticipated for a number of 
DTN applications such as space flight operations (and as is in any case true of 
bundles carrying BP administrative records).  The initial Internet Draft for 
CBHE was posted in 2006.  Since then the specification has been refined 
several times; the final Internet Draft for CBHE is currently in “IRSG poll” 
state, pending approval for its submission as an experimental RFC. 

 

d) JPL provided Simple Data Recorder (SDR) and Asynchronous Messaging 
System (AMS) implementations to the DTNRG with APIs for DTN2. 
However, practically speaking, the community interest in SDR and AMS has 
been limited to spacecraft applications, and the flight-qualified version of 
DTN (ION) is currently the implementation of choice for users of SDR or 
AMS. 

 

e) Work was commenced on the use of the JPL supercomputer cluster for large-
scale node deployment for the purpose of simulation and routing algorithm 
scalability. Initial work with the supercomputer cluster showed that the 
practicality of using this particular asset was less than desired. The nodes and 
their IP addresses (which are needed for the routing tables and various 
convergence layers in most of the common DTN implementations) were 
dynamically assigned by the SC system at run-time, and this was difficult to 
cope with. In addition, the control and simulation of link outages and topology 
changes would have required a level of access to routing tables in the SC 
cluster that was not allowable. Simulation of links with additional Qualnet 
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simulations was investigated, and the overall conclusion was that it was much 
more practical and cost-effective to abandon the SC cluster work in favor of 
large scale Qualnet simulations.  

 

Simulating large-scale operations and different routing algorithms in Qualnet 
has the added advantage that rather than requiring actual routing algorithm 
code (as would be needed in the SC cluster), Qualnet allows for algorithmic 
simulation when actual code is not yet developed. 

 

Shortly after the initial implementation and feasibility assessments of this 
work item, the Task Plan was changed to focus on the SPAWAR/USMC 
demonstration and test work.  

 

3.2 Final Phase 3 Work 

3.2.1 Changes from Final Version of the Task Plan 

 

As described in section 1.1.2, the final part of Phase 3 was to focus on assisting 
SPAWAR in demonstrating its SIE/SN software over DTN. This included providing a 
local integration environment wherein a SPAWAR-funded JPL programmer could 
integrate the SharedNet software with the BBN-provided Bundle Protocol Agent 
(BPA) software on Linux-based platforms. There followed several large change of 
scope which greatly increased the complexity and technical difficulty of the task: 

 

It was discovered that the USMC laptops that would be used in the lab and field 
demonstrations were required to run Windows XP rather than native Linux. Even 
though the tests were to be a demonstration of the efficacy of DTN in the tactical 
environment, the operational USMC networks we were planning to use would not 
permit native Linux operation, and the SECNET11 wireless cards planned for use 
only had Windows drivers in any case. Since BBN did not have a Windows 
implementation of BPA, the integration had to be done using a VMWare Virtual 
Machine Linux environment, with SIE/SharedNet running in the Windows 
environment, with a BBN-supplied Java to Linux VM program to allow the SIE/SN 
software to communicate with the Linux BPA. 

 

This had technical ramifications that included the need to accommodate multiple IP 
addresses (one set for Windows, one set for Linux), and some complex work to get 
the time synchronization to work properly between Windows and the Linux VM. 

 

The difficulties faced with getting the time to synchronize properly between the 
Windows and Linux VM operating systems led us to use a non-standard BPA that 
was developed by BBN that used relative bundle expiration time instead of absolute 
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bundle expiration time. The BPA implementation provided worked well in this 
regard, but it is not interoperable with any other DTNRG or NASA DTN 
implementation. This issue is currently being addressed in the IRTF, and a plan on 
how to standardize relative time DTN implementations was developed during the 
March 25th, 2010 DTNRG meeting at the Anaheim IETF meeting. 

  

In addition, the DARPA BBN / MITRE team decided the best approach for the tests 
would be to use the Naval Research Lab's NACK-Oriented Reliable Multicast 
(NORM), using a convergence layer adapter (CLA) written by MITRE Corp.  

 

While this promised to save bandwidth on the wireless links, the integration between 
BBN's IP Neighbor Discovery / Disrupted Routing mechanisms and the MITRE 
CLA/NORM software proved difficult as well. Inasmuch as both the BBN software 
and NORM have reliability mechanisms built in, the tuning of those mechanisms was 
time-consuming, and required several on-site visits of both BBN and MITRE 
engineers in the Protocol Technology Lab at JPL to work out the interfaces. 

 

Shortly before the December 2009 Dry Run of the field tests at the USMC Base in 
Kaneohe Bay, Hawaii, some additional complexity to the tests was added to the tests:  

 

a) Addition of Northrop-Grumman's C2PC as the user application on top of 
SIE/SN rather than using the SIE/SN Store Browser application 

 

b) Addition of NRL's Simple Multicast Forwarding (SMF) to wireless nodes in 
field testing to enable a quantitative comparison of a MANET-like forwarder 
without store-and-forward against DTN 

 

After the Field Testing at USMC Base Hawaii, the original plan was for SPAWAR to 
set up additional lab testing at the Marine Corps Tactical Support Systems Activity 
(MCTSSA) labs at Camp Pendleton, for detailed evaluation by the MCTSSA staff 
and the MCTSSA Chief Engineer for Tactical Networks. MCTSSA had a scheduling 
conflict with the planned tests, and the two weeks of lab tests were moved to the JPL 
PTL (aided by some additional funding provided by SPAWAR.) 

 

During the week before the arrival of the DARPA-directed addition of tests for 
parallel testing of native C2PC to compare against SIE/DTN, we were directed by 
DARPA to add a second satellite hop to the topology, to use DARPA-furnished 
Apposite Linktrophy 4500 satellite channel emulators, and to provide for a separate 
test string to enable MCTSSA to evaluate a Performance Enhancing Proxy known as 
WARP with DTN. 
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All of these changes to the original task plan were accomplished successfully with no 
impact to the test schedule, but the net result was that while all of this software was 
finally successfully integrated and DTN successfully demonstrated, the additional 
scope and time it took to accomplish left somewhat inadequate time for thorough end-
to-end testing and exploration of data collection and analysis techniques before the 
field and lab tests. 

 

3.2.2 Integration Tasks Accomplished 

3.2.2.1 Overall System Software Protocol Stack 

 

SIE with SharedNet are Java-based applications that can run in either Windows or Linux. 
The USMC field laptops run Windows XP only, but the BBN and MITRE DTN/NORM 
protocols only run in Linux. So a hybrid system of Windows and Linux machines had to 
be developed, with some machines running Linux only, with others running Windows XP 
and hosting VMWare virtual machines (VMs) running Ubuntu Linux.  

 

 
Figure 1: Computer configurations for system integration 

 

The end-to-end lab topology was initially set up as follows: 
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Figure 2: Lab topology for initial integration and MCBH SN test emulation 

 

This network was set up with IP addresses and network functionality as required for the 
MCBH tests as detailed in section 3.2.2.3.  (Not shown in Figures 1 & 2 are the 
commercial satellite emulators and Global Command and Control computer provided by 
SPAWAR for the MCTSSA testing.) 

 

3.2.2.2 SharedNet – DTN Integration 

 

Details of this task, which was done under separate DARPA contract with SPAWAR, are 
reported elsewhere. In summary, the modifications Jim McKelvey performed to the stock 
SIE/SN software to work with the BBN/MITRE-supplied included: 

 

a) Incorporate BBN dtn-api library into build and run scripts. 
b) Update SN to use Java 1.6 (required for dtn-api). 
c) Write interface layer between SN and DTN, in particular to map IP 

addresses to EIDs (Entity IDs). 
d) Write DTN Messenger to use interface layer instead of sockets. 
e) Make changes to comm layer to support DTN. 
f) Modify interface layer to support DTN multicast EIDs. 
g) Modify interface layer/configuration to support aggregation. 
h) Modify configuration editor to support DTN network types and EIDs. 
i) Write log analyzers for node logs. 
j) Modify configuration server/download to support DTN operation. 
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3.2.2.3 Integration Work and Associated Challenges: 

 

The mundane details of the work required to put these topologies together and to do the 
system configuration and network management are not of particular interest for this 
report; suffice it to say that the configuration of over 20 computers with over 75 different 
IP addresses to configure and keep track of, and the attendant management of firewall, 
multicast and other system administration rules was a large part of the effort. Of 
particular interest however are some notable challenges we faced that need to be 
considered in future system design and integration activities of this nature: 

 

3.2.2.3.1 Multiple Network Configurations 

 

During the course of the project, the network IP addresses and the names of the network 
nodes were changed three times.  

 

The initial integration setup had one set of IP addresses to mimic SPAWAR set-up. The 
nodes were called SSCPAC, CFT, B1386, Truck and Mobiles 1-3. 

 

Then we found MCBH Marine Corps Experimentation Center (MEC) had another 
network to adapt to, using CIDR (Classless Inter-Domain Routing) masks to separate 
subnets from one-another. Some nodes were also renamed; SSCPAC became PANDA, 
and Truck became MIP. 

 

Finally we had a 3rd topology for MCTSSA tests. Nodes were generalized to HHQ 
(Higher Headquarters), COC (Command Operations Center), TEP (Theater Entry Point), 
and then in the field, MIP became POP (Point-of-Presence) 

For the MCTSSA testing, additional complexity was introduced with the addition of 
C2PC, the Global Command and Control System (GCCS) computer, and 2 extra satellite 
hops. 

 

The net result was that the complexity of network management coupled with the need to 
change SIE, DTN and NORM configuration files from end-to-end underscores the need 
for additional future system engineering to make changes as transparent to operational 
deployments as possible. 

 

3.2.2.3.2 Time Synchronization 

 

Initially, the DTN implementation provided by BBN followed the RFC5050-compliant 
DTN bundle protocol requirement that DTN bundles have a bundle lifetime expressed in 
GMT; that is, a piece of information carried in a DTN bundle has a "shelf life" tied to a 
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specific time, after which any node may discard the bundle. This requires that all nodes in 
the DTN system be synchronized to GMT within some degree of accuracy. 

 

The initial lab setup (to mimic the San Diego SPAWAR lab set up) made universal 
access to an NTP server problematic.  We were using SPAWAR routable addresses in an 
isolated network, and therefore did not have access to an NTP server on the internet. We 
added a “backdoor” admin LAN to synch one test computer with a lab GPS Stratum 1 
NTP server, then had the test node set up as a Stratum2 server for the other computers in 
the initial test topology. (This also aided post-test analysis by enabling time sync using 
time-stamped multicast packets on the administrative lan.) 
 

While this solved some of the time-setting issues, two new issues were discovered:  

1. The WindowsXP machines wouldn’t always synch properly, and  

2. The Linux VM clocks exhibited unacceptable drift characteristics, so that the Linux 
VM clocks kept diverging from the WinXP clocks (which themselves were constantly 
drifting from the NTP server time.) 

 

Integration experiments were constantly failing due to clock drift, so eventually BBN 
provided a new Bundle Protocol Agent (BPA) that implemented a non-standard Relative 
Bundle Lifetime capability whereby the bundle expiration time was taken to be relative to 
the time of receipt of a bundle and not an absolute wall clock time. This solved the 
constant test failures due to unmanageable clock drift. 

 

It was still desired to have system clocks in synch with GPS / GMT time to facilitate test 
data analysis, so in the lab, the strategy that was ultimately adopted was to synchronize 
all the Linux clocks (even VM guests) to a local time server, and then the WindowsXP 
clocks were then synchronized to their Linux Guest VM's. 

 

We discovered that some of the problems synching Windows clocks were related to the 
fact that the default setting of the w32time.dll time-synch application is to synch the 
Windows clock to a time server once every seven days whether you need it or not. A 
registry modification was required to reduce the update period from a week to several 
minutes: 

set the time synch interval (period) to something much less than the default of 7 days:  
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\Parameters 
Period=<number of seconds between NTP server polls>  

 

3.2.2.3.3 Addition of NORM and Windows Multicast Operation 
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In order to add some robustness to wireless links and to potentially cut down on traffic 
over the RF links, the Naval Research Lab NACK-Oriented Reliable Multicast (NORM) 
protocol was added below BPA, using a CLA provided by MITRE. 

 

Addition of multicast provided a plethora of new issues to basic integration and 
operations with the WinXP/Linux VM setup: 

1. SN now had to be configured to use multicast groups 

2. Special Windows software development toolkit software (mcase.exe) had to be used to 
enable WinXP to join a multicast group. This also had to be run in a batch file in a 
continuous loop to get it to initialize and join the group without start up issues. For field 
deployment of this system, a much more elegant solution is needed. 

 

3.2.2.3.4 Performance Tuning of Reliability Mechanisms 

 

SharedNet, the BBN Disruptive Routing (DR) and it's mechanism of IP Neighbor 
Discovery (IPND) and NORM all have separate reliability mechanisms/timers and tuning 
them to work together properly took a large amount of time. While the final result was 
that the team got SIE/SN/BPA/NORM working well, much more tuning and operational 
configuration refinement needs to be done in the future. 

 

3.2.2.3.5 Unexpected Satellite modem Quality of Service (QoS) Characteristics 

 

During the MCBH field tests, the operational Ku-band satellite hop exhibited some 
unexpected jitter characteristics. While we anticipated a certain amount of jitter and 
delay, the operational system would delay packets over the satellite link for sometimes 
seconds at a time due to the queuing behavior on the satellite link. This made 
performance tuning of the aforementioned reliability mechanisms problematic. This 
behavior was later attributed to a misconfiguration of the modem at MCBH, but pointed 
out the need to consider such unexpected behavior in future systems design of systems 
which rely on link layer ARQ retransmission mechanisms. 

 

(The feasibility of modeling simulating such large delays and jitter measured in seconds 
was discussed with the engineers at Apposite. They explained that every satellite modem 
manufacturer has their own proprietary way of doing QoS, and that most modem makers 
are unwilling to share their algorithms, therefore it is near impossible to model these 
effects.) 
 

3.2.2.3.6 SharedNet Analysis Tools 

 

The SharedNet software in the proper debug mode creates voluminous logs that show 
every detail if the operation of the software. In order to capture statistics and to quantify 
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the operation of SharedNet with and without DTN, it was necessary to do a considerable 
amount of post-processing of the logs. Team member Rick Borgen created a number of 
post-processing programs that dealt with these SN log files as described below. (The 
actual scripts (php) are available for download on the BBN SIE Wiki.) 

 

 
Figure 3: SharedNet Log processing 

 

The most important source of test metrics are the SharedNet logs provided normally by 
the SharedNet system (Figure 3).  These logs provide highly detailed information about 
transactions at various stages of processing for each running ShareNet application.  
However, the complexity and format of the logs offers considerable challenges to support 
analysis of the test results.  Just one test run of SharedNet will create dozens of very large 
files packed with complex data with much of this data only suitable for specialized 
trouble-shooting.  From a test analysis point-of-view, the problems included far too much 
volume, formats poorly suited for direct reading, too much irrelevant information, 
inconvenient formats for automated processing and no summarization or statistics.  The 
solution was to develop a set of tools for filtering, reformatting and deriving useful data 
from the logs, with further tools for preparing test-based reports and plots. 

The first stage of SharedNet log processing aims to capture only the most relevant data, 
format that data more conveniently and compute useful statistics.  The main object of 
interest is the single transaction event as seen by the communications layer and then as 
seen at the application layer.  Other objects of interest are events related to the detection 
and correction of missing messages.  Format simplification included reducing the 
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essential information to a single line of text, providing human-readable date-time formats 
and using a fixed format.   The tools also compute various conventional statistics such as 
totals, averages, and min/max, as well as some special observations such as data gaps.  
There are three standard products from first stage processing: 

 events – one-line time-tagged descriptions of key events 

 intervals – summaries data flows/gaps over regular intervals 

 stats – statistical summary of total test run 

The second stage of SharedNet log processing operates on the first-stage products 
(usually stats and intervals) producing reports and plots suitable for analysis.  In general, 
this immediate next-stage product is in the form of a comma-separated-values (csv) file 
that can be readily imported into Microsoft Excel.  An important part of this process uses 
a simple database of test descriptions to attach the test identification and test context 
information with each reported metric.  For example, the most general report tool 
summarizes selected statistics in row/column style with each line describing a specific 
test run along with its statistics.  Additionally, there are two specific analysis products 
used principally for plots: 

 cdf – cumulative distribution function showing aggregate messages by time 

aging – an aging analysis of track information over the lifetime of the test 
intended to provide a composite metric of the database quality 

 

Post-processed data from the analysis software was posted on the BBN SIE Wiki site for 
use by the other teams who were doing the detailed analysis of the test results. Some 
examples of the data thus derived are shown in the Test Results Summary section below. 

 

3.2.3 Test Program 

 

This section will summarize some of the JPL Core Engineering Support team’s 
observations of the field and lab tests, which were planned and directed by SPAWAR. 
This section will summarize the results with a focus on the benefits DTN adds to standard 
SIE/SN. During this phase of the program, BBN was named the lead integrator, with 
SPAWAR being in charge of the testing, so the details of how well SN Classic, SN/DTN 
and C2PC worked will be reported on by BBN and SPAWAR in separate reports. 

  

Field testing in Hawaii was conducted in two phases; a dry run in December 2009 (one 
week at MCBH), followed by the formal field tests  conducted from 19 January 2010 
through 29 January 2010. Following the work at MCBH, we prepared the Protocol 
Technology Lab at JPL to host the MCTSSA testing activity, which was conducted 
between 22 February 2010 and 25 February 2010. 
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3.2.3.1 SIE/SN MCBH Field Tests 

The field testing was conducted over a 2 week period in January 2010. Over 125 test runs 
were completed, and over 2,000 SharedNet log files were captured and processed through 
the SharedNet analysis scripts described in section 3.2.2.3.6 above, and plotted in Excel. 

 

During the field testing at USMC Base Hawaii, the performance of SIE/SharedNet 
without DTN (referred to as SharedNet Classic) and SIE/SharedNet over DTN 
(BPA/DR/IPND/NORM) was evaluated. As a general rule, the observed results were as 
expected, with DTN enabling the delivery of data to intermittently connected mobile 
nodes that the standard internet-based SIE/SN system could not reach. 

 

3.2.3.2 Topology – Marine Corps Base Hawaii 

 
The SPAWAR Test Plan [1] for the field tests called for an overall test scheme whereby SIE data 
was generated in their lab in San Diego, passed through the DISN network to Hawaii, where, 
after a satellite hop to their M2C2 Interoperability Prototype (MIP) vehicle, the SIE data was 
transmitted to laptops in the field over Secnet11 (a secure 802.11 system.) The planned topology 
is shown below: 

 

 
Figure 4: MCBH Field Test Topology 

 
In order to duplicate this setup in the lab at JPL for integration and test before going to the field, 
the MCBH network as shown in figures 4 and 5 was functionally duplicated in the PTL. A 
WANEM simulation of the Ku-band satellite hop was used to simulate the delay and losses 
expected in the field tests. 802.11 RF links were used in place of the SECNET 11 cards planned 
for the field tests. The source of track data was the SPAWAR DARS Replay software that can 
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record and play back SIE/SN track data. As explained in the SPAWAR Test Plan, “The “Scenario 
Generator” listed in the SSC Pacific block of the test architecture is a specialized component of 
the SIE called the Data Archive and Replay System (DARS).  DARS can record SharedNet 
events and replay them at real or accelerated time.  SN objects (tracks, overlays, etc.) are 
generated over a specific time period and then replayed for each test to ensure consistent input.” 
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Figure 5: MCBH network functionally duplicated in JPL PTL
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3.2.3.2.1 Test descriptions and scenarios 
 

The overall topology and configuration details for the MCBH field tests were detailed in 
figures 4 and 5 above. The DARS replay system was used to provide repeatable and 
consistent track/overlay generation data flows for transmission over the various links. 

 

The test configurations and mobile topologies used are detailed in the SPAWAR Test 
Plan [1], and summarized here in figures 6 and 7 following, which excerpts drawings 
from the SPAWAR test plan. 

 

The first 5 test cases were merely to characterize the performance of each of the 
communication paths between each node.  A utility program called MGEN* was used to 
present a known stream of traffic to the network, and to characterize the throughput, 
latency, jitter and loss over each link. 

 

The subsequent test cases (6-13) were designed to test the end-to-end performance of 
SIE/SN in both “classic” UDP/IP-based mode, and over DTN, with various mobile 
scenarios played out that would represent potential tactical topologies of interest to the 
USMC. 

 

While most of the tests compared SIE/SN/UDP/IP (“classic” mode) versus SIE/SN/DTN, 
an additional multicast forwarding test was run when the test topology called for a linear 
topology of mobile units. In a linear topology of RF links (see test case 9, figure 6), data 
from standard SIE/SN/UDP/IP would not be able to reach mobile2 or 3 from MIP, as 
there is no standard internet route from MIP past mobile 1. While DTN, with its store-
and-forward capability, can overcome this deficiency, an experimental alternative method 
of doing multicast forwarding was tried by BBN. While it succeeded in forwarding some 
of the multicast data from MIP through mobile 1 to the other mobile units, it’s net 
performance was orders of magnitude worse than that of DTN. 

 

A typical SIE/SN “classic” versus SIE/SN/DTN test run is shown in figure 8, and 
described in the next section. 

_______________________________________________________________________ 

*From http://cs.itd.nrl.navy.mil/work/mgen/ -- “The Multi-Generator (MGEN) is open 
source software developed by the Naval Research Laboratory (NRL) PROTocol 
Engineering Advanced Networking (PROTEAN) Research Group. MGEN provides the 
ability to perform IP network performance tests and measurements using UDP/IP traffic.” 
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Figure 6 – MCBH Test Cases 1-9 
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Figure 7 – MCBH Test Cases 10-13 
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Figure 8 – Test Case 12 Example Runs  
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3.2.3.2.2 MCBH Test Summary and Example 

 

Figure 8 shows cumulative track update counts at each node for a run using test case 12 
topology. The plots on the left hand side are the data received at the 3 mobile laptops 
over the 802.11 links using the “classic” SIE/SN system that uses normal wired internet 
protocols. Out of close to 50,000 track updates during the test, the plots show that the 
mobile units received less than one third of the data due to the breakdown of standard 
internet protocols and their need for continuous end-to-end connectivity to be successful. 

 

On the right hand side are plots from the three mobile units when the SIE/SN system was 
run over DTN protocols. In each case, all mobile nodes received all the track updates that 
were sent to them by the MIP. During this scenario, mobile 3 moved out of 
communications range for several moments and lost contact with the MIP, causing 
disruption in the track update flow. (See bottom left plot;  gaps in data updates between 
about 20:35 and 20:41.)t Mobile 3 then moved close to mobile 2, and as soon as 
communications was established with mobile 2, the DTN protocol allowed stored update 
data addressed to mobile 3 to flow, resulting in a rapid “catch-up” in track updates (steep 
slope around 20:41.) After the “catch-up”, mobile 3 continues to receive updates at the 
rate MIP generated them, but in this part of the scenario, mobile 3 is receiving them 
through the DTN store & forward capability from MIP through mobile 2 to mobile 3. 

 

Out of the hundred-plus test runs, this pattern was demonstrated over and over: SIE/SN in 
its classic wired internet incarnation performs poorly in a wireless or satellite hop 
environment, while SIE/SN running over DTN consistently delivered the expected and 
desired amount of data to all end nodes in on the disconnected edge of the network. 

 

There were issues discovered (yet to be resolved) with the performance of classic 
SIE/SN, and there is much to be learned about performance tuning from the enormous 
quantities of data that were taken, and those details will be discussed in reports from 
SPAWAR and BBN. Suffice it to say, the MCBH tests demonstrated the value of DTN in 
a large number of scenarios over an operational USMC satellite communications 
network. 

 

3.2.3.3 SIE/SN MCTSSA Testing –  

 

Following the successful field demonstrations and tests in Hawaii, the original plan was 
to turn the system over to the Marine Corps Tactical Systems Support Activity 
(MCTSSA) at Camp Pendleton, California for independent test and evaluation of the 
DTN-enabled SIE system. 

 

Scheduling conflicts and programmatic timing made the tests at MCTSSA impossible, so 
it was decided that the MCTSSA tests would be conducted at JPL under the supervision 
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of Capt. John Frushour, the Chief Engineer for Marine Corps Tactical Networks, with 
observers from the US Army CERDEC activity.  

 

Lab testing was conducted over a period of four days, with 22 test runs of 20 minutes 
each were conducted under controlled and repeatable circumstances. This allowed the 
confirmation of performance seen in the field tests, expanded the operational envelope to 
include two satellite hops (with much worse satellite hop performance than seen in the 
field tests,) used a currently fielded track generator (Global Command and Control 
System, GCCS), and showed the performance of the C2PC program in parallel with 
SIE/SN/DTN. 

 

3.2.3.4 Topology – MCTSSA tests 

 

The MCTSSA topology was different from the arrangement used at MCBH in terms of 
topology, systems used for data (track) generation, and comparison tests.  

 

It was decided that we would emulate a tactical network which included two satellite 
hops, each with a random 65% availability, and that we would test SIE/DTN against a 
currently-fielded Northrop-Grumman application known as C2PC.  

 

To add both rigor and realism to the tests, a network was set up that included the Global 
Command and Control System (GCCS), which generated track data provided to both 
C2PC and the SIE/DTN/NORM system tested in the field. The topology was set up to 
allow simultaneous simulation scenarios to be run in parallel for direct comparison of the 
current system end-to-end IP-based system (C2PC) and the DTN-enabled system 
(SIE/SN/DTN/NORM). 

 

At DARPA's request, two Apposite Linktrophy link simulators were borrowed and 
included in the simulation. Their performance was similar to the WANEM simulators 
used, but they had an advantage of providing graphical real-time monitoring of the 
performance of the satellite links during the tests. 

 

The next two figures provide details on the configurations used in the PTL for the 
MCTSSA testing: Note the changes in node names to more generic identifications. 
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Figure 9: MCTSSA Test Topology 
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Figure 10: MCTSSA configuration details 
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3.2.3.4.1 MCTSSA Test Descriptions and Scenarios 

 

The satellite hop used in the MCBH tests was replaced by two satcom hops in the 
MCTSSA testing. Commercial Apposite Linktrophy 4500  network simulators were used 
for one pair of satellite hops, with WANEM simulations used for the other pair of 
satellite hops. 

 

The satellite availability in the MCBH tests was very good, but for the MCTSSA testing 
it was desired to stress the system and use a rather worst case satcom link. During the 
DARPA Phase 2 tests at Fort A.P. Hill,  the overall availability of the satellite channel 
was about 65%, as shown in figure 11: 

 

 
Figure 11 – Ft. A. P. Hill tests 

 

By request of MCTSSA, both satellite link simulations were programmed to provide a 
65% availability over a 15 minute period, after which a period of 5 minutes of good 
connectivity was simulated. A random pattern of outage was independently chosen for 
each of the two satellite links that provided an aggregate 65% availability over each link 
(figures 12-13), and the overall throughput used for the satellite links is shown in figure 
14. When it was noted how bad the resultant throughput was, it was decided to leave it as 
programmed as it would show how well C2PC and SN/SIE/DTN would fare in pretty 
stressful conditions.  
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Figure 12: WanEm Simulator programming 

 

 
Figure 13: Linktrophy 4500 Simulator programming 

 

 
Figure 14: Overall effective throughput from COC through 2 satellite hops to POP 

 

The test plan for the MCTSSA Tests (reference [2]) was prepared by SPAWAR, and 6 
scenarios were prepared wherein three mobile units were moved in various tactical 
formations. In the interest of time, it was decided that only 5 mobile scenarios would be 
used, and they are presented in figures 15-19 below.
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Figure 15:  MCTSSA Scenario 1 
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Figure 16: MCTSSA Scenario 2 
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Figure 17: MCTSSA Scenario 3 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

34 

 
Figure 18: MCTSSA Scenario 4 
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Figure 19: MCTSSA Scenario 6 
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In the lab tests, actual mobile laptops were used for the mobile nodes, but the 802.11 
(SECNET11) RF links and vehicle mobility were simulated using a commercial network 
simulation software package named Qualnet. The Qualnet simulations used certified 
802.11 protocol models, realistic link parameters (e.g. physical layer RF parameters), and 
moved the mobile nodes according to the planned scenarios. This resulted in a high-
fidelity and perfectly repeatable series of tests that took much uncertainty out of the test-
to-test comparisons of the different higher-layer protocols. 

 

The MCTSSA tests followed a general procedure of starting up all software on all nodes, 
insuring that all DTN nodes were properly communicating over perfect links, then 
starting the satellite loss model scripts and the Qualnet mobility scripts. The mobility runs 
were generally 15 minutes long, with a five minute period of good communications at the 
end for evaluation of both DTN and C2PC loss-correction mechanisms.  

 

Figure 20 shows a typical Qualnet screen shot during a simulation run.  

 
Figure 20: Qualnet Simulator screenshot 
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The simulator shows vehicle movement, lines between vehicles to indicate connectivity, 
and concentric expanding circles indicating packet propagation from each node. The 
details of the Qualnet simulation and the setups needed for these tests are included in 
Appendix C. 

 

3.2.3.4.2 Configuration Changes from MCBH Testing 

 

Aside from using Qualnet and satellite simulators to replace field equipment, there were 
other noteworthy configuration changes in the MCTSSA testing as compared to the 
MCBH field testing: 

 

A Sun SPARC workstation with the Global Command and Control System (GCCS) 
software was used to generate track data and updates instead of the DARS Replay 
software. The GCCS box was used to generate tracks for both C2PC and the DTN-
enabled SIE/SN system using a SPAWAR-developed translator program that converted 
GCCS/C2PC tracks/updates into SIE/SN tracks/updates. 

 

An administrative Ethernet LAN was added to the lab configuration, and an 
administrative server with a terabyte disk reserved for test data was added. This enabled 
the automation of data collection (logs, etc.) before, during and after the test runs. The 
admin server (and its data) were made available over the internet to SPAWAR, BBN and 
MITRE for post-test data analysis. This saved a considerable amount of time compared to 
the manual process of copying data off each node post test onto a portable drive, as was 
done in Hawaii. 

 

3.2.3.4.3 Emulation and Instrumentation Challenges 

 

As was mentioned in section 3.2.2.3.5, the queuing behavior of the satellite modem at 
MCBH was unusual, and may have been exacerbated by misconfiguration. In any case, 
the latency behavior of the satellite modem in the field was not duplicated nor simulated 
in the MCTSSA tests. It was felt that the impacts of the large latencies were understood 
and not crucial to investigate in the MCTSSA testing. 

 

As it turned out, an unexpected challenge was that the C2PC system neither provides logs 
nor visual indication (counts) of the number of track or track updates received. 
Furthermore, the inspection of C2PC data using Wireshark data was somewhat futile, as 
we had no way to correlate tracks between C2PC and the DTN branches of the 
experiment. By observing the track updates on the C2PC screens, it was very obvious 
when the C2PC system ceased to update, while the DTN systems were still getting track 
updates. This made it impossible (as of this writing) to quantitatively compare 
SIE/SN/DTN, though the disruption-tolerance of the latter system was obvious. 
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To compound the difficulties the data analysis team faced post test, the GCCS system did 
not have any way to script a test run with an exact number and distribution of tracks and 
track updates. A command line debug utility was available to create tracks at a certain 
rate, but there was not way to script it to provide a reproducible simulation.  

 

JPL’s Phil Tsao developed a parser for Classic SharedNet that could pull out track 
identification out of SN data flows captured by Wireshark, and this was provided to 
DARPA for use in subsequent analysis work. 

 

3.2.3.4.4 Test Summary – Two Examples 

 

Figure 21 shows the cumulative track update data plots from a run of scenario 1. The first 
plot shows the data from the GCCS system sent over the dual satellite link path to the 
POP SIE/SN server. The next plot is the overall link throughput, with the data received at 
POP in the bottom plot. Blue call-out notes are as follows:  

 

1. Clean translator-to-COC1 events (top left plot) disrupted by satellite outages - gaps in 
POP1 data correspond to low satellite channel availability. 

2. POP1 still receives all of the generated track updates as DTN forwards them when 
satcom link improves. 

3. During a poor satcom coverage period, mobile2 and mobile3 receive DTN updates - 
mobile1 has by this time moved out of comm with anyone, so 

4. Mobile1 finally gets caught up to the note 3-level of updates when back in range of 
mobile3 and the mesh network. 

5. From point 5 on, all 3 mobiles get updates from POP1, ending up with all of the 
GCCS-generated track updates. 

 

This demonstrates DTN’s ability to forward data from mobile3 to mobile1 (where classic 
SIE/SN/IP would only be able to forward data from POP to mobile 3 at a later time), and 
the store-and-forward operations of DTN improving operations over the poor satellite 
path. In a classis SN/SIE or C2PC system, when contact is lost over the satellite system, 
the SN or C2PC servers have to go through all the handshaking necessary to re-establish 
the server-client relationship between the COC server and the POP server, which proved 
to be impossible in the tests during the t=5-15 minute period when satellite 
communication was very poor. DTN’s store and forward capability allowed COC to 
continue to update POP even when satcomm throughput was very intermittent, and the 
higher-level server systems did not need to go through contact reinitialization. 
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Figure 21: MSCTSSA Scenario 1 Run.
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Figure 22 shows the SIE/SN/DTN performance during a MCTSSA Scenario 6 run. In this case, 
the three mobile units move from a mesh network (where all can see POP), to a linear 
arrangement where POP can only see mobile1, and the mobile units can only see the vehicle in 
front or behind. During the movement, connections between vehicles are broken then regained 
as the scenario progresses (see timeline upper right). 

 

In this scenario, the blue call-out notes are as follows: 

 

1. Satellite outages cause gaps in POP data available to send to mobile1-mobile3 

2. mobile3 getting data forwarded from mobile2 until it moves out of range 

3. mobile2 getting data from mobile 1 until out of range 

4. mobile1 looses contact with POP 

5. mobile3 and mobile2 back in range of one another; mobile3 gets updates from mobile 2 

6. mobile1 and mobile2 in range, mobile2 gets updates from mobile1 

7. mobile3 gets updates from mobile1 through mobile2 

8. Finally everyone in linear array, DTN gets data to everyone through its store & forward 
capability. 

 

In the C2PC case, mobile1 received updates while it was in reliable contact with POP, but 
mobile2 and mobile3 stopped getting data as soon as they were out of range of POP, since 
there is no multicast forwarding mechanism in C2PC. 
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Figure 22: MCTSSA Scenario 6 Run 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

42 

3.2.3.4.5 Test Anomalies and Analysis Difficulties 

 

It was discovered that the GCCS-SIE translator was very inefficient, and was causing the 
SIE/SN/DTN traffic over the satellite links to be six times greater than expected. 
Investigations and discussions with the developers at SPAWAR revealed that a GCCS 
track update containing 6 track parameters would result in one C2PC message, but it the 
SPAWAR GCCS-SIE translator would create six SIE/SN messages to do the same update 
over SharedNet. This made the link utilization statistics of SIE/SN/DTN look poor as 
compared to C2PC. The problem is understood, and it our understanding that SPAWAR 
is working on a revised and more efficient version of the GCCS-SIE translator. 

 

In retrospect, the comparison of C2PC to SIE/SN was somewhat unbalanced. C2PC is an 
unreliable system (that is to say reliable delivery to clients is not assured), whereas 
SIE/SN is a reliable delivery system, and enforces in-order, gapless delivery of track data 
to the user-level display mechanisms.. The difference in the reliability philosophies 
between the two systems made C2PC appear to be working better under some 
circumstances, but what was being observed was later C2PC tracks making it through 
(with lots of data loss), while the SIE/SN/DTN system buffered data up while awaiting 
retransmission of lost messages in order to assure complete and in-order data flow to the 
operator’s visual display. 

 

Lack of quantifiable C2PC performance data, and inability to correlate the track 
identifications of data being sent via SIE/SN and C2PC made it impossible to assess 
performance metrics such as track update latency, or even number of tracks received by 
C2PC. Raw data dumps are being evaluated by the other teams, and should there be 
additional funding to continue the quantitative analysis, JPL SN and PTL developers 
have a software design that would allow for the needed correlation information to be 
dissected from the Wireshark logs. 

 

(A comparative analysis between C2PC and SN (Classic or DTN versions) has been very 
difficult, as attested to by other analysts in the DARPA team. Some of the reasons are 
cited below, quoted from email traffic with the team: 

1. C2PC developers state that C2PC logs are designed only for internal 
consistency checks; they are not suitable instrumentation for performance 
checking. 
 
2. Hence the only instrumentation data available for C2PC performance 
quantification is Wireshark data, which is by definition on the wire. Put 
differently, there is no quantitative C2PC data that can be automatically 
collected at the application/user layer. 
 
3. In contrast, SN (both flavors) has extensive instrumentation logging at the top 
of the network stack and at the application/user layer. 
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4. However, during the transition tests, no Wireshark dissector existed for SN 
(either flavor), and <bold>there is no simple way to relate the data in SN 
packets on the wire or at the top of the network stack to SN objects at the 
application/user layer. 
 
5. Hence, without a SN dissector, no apples‐to‐apples comparison can be made 
between C2PC data and SN data. 
 

By the time the need for better instrumentation for C2PC and Wireshark dissector tools 
for SharedNet was identified, there was neither sufficient time nor DARPA budget to do 
further software development at JPL.) 

 

 

3.2.3.5 Overall Test Summary 

 

Comparison between the systems tested in both Hawaii and in the PTL Lab for MCTSSA 
encompasses a number of metrics such as bandwidth utilization, data latency, throughput, 
total amount of data reaching the intended destinations, routing and IP neighbor discover 
performance, and performance of the NORM protocol. 

 

The details of these metrics are being reported by the SPAWAR/BBN/MITRE teams. 
From the JPL observer standpoint, the main qualitative result that was clearly evident 
throughout the tests is that DTN clearly outperforms standard IP-based delivery systems 
in a disrupted environment. The legacy systems compared to SIE/SN/DTN failed to 
handle satellite disruptions or breaks in mobile connectivity to the MIP or POP server, 
while the DTN-enabled system got the data through. 

 

The tests showed that the NRL Simple Multicast Forwarding system (explored during the 
MCBH field tests) underperformed expectations, and qualitatively did not compare well 
to DTN in the ability to store and forward data in a linear topology. Further baseline tests 
of SMF vs. DTN would have to be conducted to accurately quantify the relative 
performances of the two protocols in a linear topology. 

 

An enormous amount of data was collected, and much analysis work remains. This 
analysis work will be crucial to enable the optimization of the performance of the system, 
inasmuch as there are reliability and timing elements at every level in the protocol stack 
fielded; while we obtained generally acceptable results, there may be a lot of 
improvement that can be made with suitable parameter adjustments in the reliability and 
retransmission mechanisms. 

 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

44 

The ease with which DTN handled the satellite disruptions was noteworthy, and the 
MCTSSA representatives expressed a desire to field a general-purpose DTN proxy node 
at either end of a satellite link (possibly including a TCP/IP performance-enhancing 
proxy, or PEP).  We did some informal demonstrations of DTN-enabled web browsing 
and chat while the MCTSSA staff was in the PTL, showing that there are many 
applications besides SIE/SN or C2PC that would benefit from DTN. 

 

All-in-all, the DTN protocol was successfully demonstrated and tested over operational 
networks in the field, and the benefits and advantages of DTN were very easy to see. 

 

3.2.4 USMC Tactical Systems Support Activity Report and Conclusions 

MCTSSA Tactical Networks Chief Engineer Captain John Frushour, actively participated 
in all testing at JPL, and his observations and conclusions were reported in Reference [3]. 
The key quotation from his Executive Summary is “Overall, the contrast between DTN 
and non-DTN enhanced network testing showed overwhelmingly positive results. Where 
non-DTN networks could not deliver traffic to disconnected nodes, the DTN-enhanced 
networks were nearly 100% reliable.” 

 

During the MCTSSA testing, JPL made lab space available for Capt. Frushour and others 
to do conduct testing of a commercial Performance-Enhancing Proxy known as the Web 
Assured Response Protocol (WARP) and to assess the use of DTN with this product.  The 
results of these tests, as reported in Reference [4], are best summed up in that report’s 
Executive Summary, “Independently, each product is successful in their own way. 
During this interoperability test, the goal was to examine each technologies approach to 
“cleaning up” satellite communications and determine whether the two technologies 
exhibit a complementary relationship. The results were quite attractive. Not only were the 
products able to be seamlessly integrated in a short time; the benefits were instantaneous 
and tangible.” 

 

Finally, Captain Frushour recommended future development and test activities (Ref. [3]) 
that warrant citation in this report: 

 

Suggestions for Development  

a. Client Application (PC based)  
Previously (from Hawaii trip report) it was stated that there are two suggested 
means of development for the DTN architecture. This can be refined. Given that 
DTN has an associated API and the relative ease of integration seen in the 
WARP/DTN 7  
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integration testing also performed at NASA JPL, it would be wise to advance 
DTN’s development in this fashion:  
1) Decouple any application dependency between DTN and products such as 
SharedNet.  

2) Investigate the possibility of integrating the Bundle Protocol Agent, or a 
similar DTN implementation, with WAN acceleration technologies. This would 
henceforth provide both acceleration AND reliability to troublesome WAN links 
over satellite or terrestrial systems.  

3) Investigate the feasibility of application specific proxy devices for the DTN 
architecture. Further traffic analysis would have to be garnered in order to 
determine which proxy devices warrant incorporation into the DTN architecture.  

4) Develop an integrated product, preferably a client application (although 
appliance is certainly not prohibited), that is PC based and can be configured via 
traditional Microsoft Active Directory OU policies.  

b. Network Topology  
 

Future testing of the DTN architecture needs to be of the integrated variety. 
Because DTN is not a traditional performance enhancing proxy, and also its 
approach is both novel and unique, it should be tested in order to determine the 
maximum benefit over existing systems. Additionally, it would be wise to develop 
realistic models of current traffic flows, so as to compare them with DTN 
performance benefits and ultimately compose a more realistic traffic analysis. 

 

3.2.5 Lessons Learned 

 

Comments and lessons learned thoughts below are meant to be reminders and 
observations to consider for the next similar project, and are in no way meant as criticism 
of any group or program. 

 

1. Unexpected Data Volume 

For each test run, the data collected from each node in the test included log data from SN, 
BPA, MGEN, NORM and a Wireshark capture of all traffic. Test data collection, 
instrumentation and post-test analysis steps were simply to instrument everything, take 
pcap dumps of traffic from all 20 nodes and all ports on each node and hope to sort out 
the data later.  

 

The SN log analysis runs alone produced 3,178 files and many hundreds of plots. 	
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In future test programs such as this, it is recommended that more time be spent planning 
on what metrics are to be determined, what data are to be collected, what analysis 
software is necessary (and what has to be written) and how much analysis time and effort 
will be needed to sort through the data. 

2. Integration Time and Effort 

Several items in this category are worth noting: 

- Insufficient time was allocated to get the basic systems up and running, and this 
took away from time intended to do dry runs and parameter tuning of the SN, 
BPA, and NORM components.  

- The difficulty in configuration and complexity of running Win and Linux at the 
same time was underestimated. 

- If government-furnished software is to be used, make sure it is working properly 
before the installation team departs – it took several days of lost time trying to 
make C2PC and GCCS work properly, and it was found that the C2PC installation 
wasn’t correct. 

- Multi-team integration of software needs face-to-face participation in the lab 
initially. Once the basic components can be demonstrated to work, the team can 
disperse to their home labs and do the tuning and testing of the system remotely. 

- Robust remote access is necessary, and a central data / SVN / Wiki repository like 
BBN provided is crucial. Some company firewall problems required workarounds 
to allow developers to log in remotely to run tests or change configurations. Time 
spent planning these details is time well spent. 

3. Use of Government (or Commercial) “Off-the-shelf” Software 

- Government or Commercial Off the Shelf products can’t be instrumented easily 
(or at all). For example, C2PC has no log files, no performance indications (such 
as number of tracks received), and the on-the-wire formats of C2PC data had to 
be “reverse engineered” using Wireshark data exported as PDML files. 

- GOTS/COTS may not be able to accommodate controlled tests – e.g. the GCCS 
generator software couldn’t be programmed to stop after a certain number of track 
updates or after a certain time. 

- GOTS software operations need to be considered carefully in test planning. For 
example, when a C2PC client goes out of comm , it must be manually 
reconnected to the server; this was not always possible to do in a timely (or 
predictable) fashion during the MCTSSA tests. 	
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3.3 Contact information 

 

For further information please contact the JPL Core Engineering Support Team: 

 

Scott Burleigh – Scott.Burleigh@jpl.nasa.gov 

Rick Borgen – Richard.L.Borgen@jpl.nasa.gov 

James McKelvey James.W.Mckelvey@jpl.nasa.gov 

John Segui - John.S.Segui@jpl.nasa.gov 

Leigh Torgerson – ltorgerson@jpl.nasa.gov 

Philip Tsao -  Philip.C.Tsao@jpl.nasa.gov 
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Appendix A: Acronyms and Abbreviations 

 
 

ATH  At-the-Halt 

C2PC  Command and Control Personal Computer 

C4I  Command, Control, Communications, Computers, Intelligence 

DARPA  Defense Advanced Research Projects Agency 

DARS  Data Archive and Replay System 

DTN  Disruption Tolerant Networking 

GCCS  Global Command and Control System 

IOS  Information-Operations Server 

M2C2  Mobile Modular Command and Control 

MARFORPAC Marine Forces Pacific 

MCTSSA  Marine Corps Tactical Systems Support Activity 

MEC  Marine Experimentation Center 

MCBH  Marine Corps Base Hawaii 

MIP  Mobile Modular Command and Control (M2C2) Interoperability  

   Prototype (MIP) 

NAI  Named Area of Interest 

OTH  On-The-Horizon 

OTM  On-The-Move 

ONR  Office of Naval Research 

PEP  Performance Enhancing Proxy 

POP  Point of Presence 

POR  Program of Record 

SIE  Software Interoperability Environment 

SA   Situation Awareness 

SN   SharedNet 

SVN  Subversion version control system 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

50 

Appendix B: MCTSSA - WANem setup  

(by Phil Tsao) 

 
WANem satellite channel simulation set up instructions: 
 
Background: 
WANem is a "liveCD" Linux distribution that turns almost x86 computer into a basic link 
emulator. (adjustable packet loss, throughput, delay, etc) 
 
Often times, it may be desirable to emulate more than one link on a single computer. Assuming 
the physical machine has enough ram and ethernet ports, one may simply run multiple WANem 
instances in multiple virtual machines. Multiple virtual machines may represent a undesirable 
overhead and are not necessary when one wishes to implement multiple independent ethernet 
bridges on disjoint subnets. 
 
Example: 
COC (10.1.100.166 netmask 255.255.255.0) <‐> WANem <‐> TEP (214.15.3.20 netmask 
255.255.255.248) <‐> WANem <‐> POP (214.15.3.85 netmask 255.255.255.240) 
 
This configuration requires two virtual machines each of which implements a router. 
 
1. Populate a computer with a hard drive and 5 ethernet NICs. I assume the 5 NICs correspond 
to eth0 through eth4. If they don't on your machine, adjust the the instructions as needed. I 
further assume eth1 goes to COC, eth2 goes to the left side of TEP, eth3 goes to the right side of 
TEP and eth4 goes to POP. 
2. Install a relatively recent Linux distribution (Ubuntu Jaunty Jackalope used for MCTSSA 
testing) 
3. Assume eth0 is attached to the administrative LAN. Assign an ip (ifconfig eth0 192.168.3.101 
netmask 255.255.255.0) and edit the appropriate config files to make it persist across reboots. 
4. Install VirtualBox. (Other VM software will likely work) 
5. Depending on your package manager, you may need to reboot. There is an "internal" 
administrative LAN which will be used to control the VM's. Assign an ip (ifconfig vbox0 
192.168.4.1 netmask 255.255.255.0) and edit the appropriate config files to make it stick. 
6. In VirtualBox, create 2 identical VM's. Have them both boot from a WANem liveCD (preferably 
an iso image). Enable 3 network adapters: Assign eth0 of the guest to the host only adapter and 
eth1 and eth2 to bridged adapters (eth1, eth2, eth3 and eth4 respectively). 
7. Start up the first VM and wait until it gives you the WANem prompt. Type 'exit2shell' to get to 
the bash prompt. 
8. Assign ip addresses (ifconfig eth0 192.168.4.2 netmask 255.255.255.0 && ifconfig eth1 
10.1.100.165 netmask 255.255.255.0 && ifconfig eth2 214.15.3.17 netmask 255.255.255.248) 
9. Make sure COC and TEP can ping across the bridge (assuming COC and TEP have routes set 
appropriately. You may want to kill the "pump" process to save future aggravation in case DHCP 
servers are running. 
10. If necessary, restart apache in /etc/init.d/apache2 
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11. On the host, point your web browser to <http://192.168.4.2/WANem>. If you get an error 
message, you must have missed a step or mistyped something. 
12. Now would be a good time to "save snapshot" under the "machine" menu. 
13. If you don't have "socat" on the host, install it. Put something like "socat tcp‐listen:8001,fork 
tcp:192.168.4.2:80 & socat tcp‐listen:2001,fork tcp:192.168.4.2:22 &" in /etc/rc.local of the host 
unless you like typing in long cryptic command lines every time the computer reboots. 
14. If you did everything correctly, you should be able to access the VM by pointing a web 
browser to <http://192.168.3.101:8001/WANem> or by SSH (ssh ‐vc arcfour ‐p 2001 
root@192.168.3.101) 
15. Repeat steps 7‐13 for the second VM. The ip addresses are different (ifconfig eth0 
192.168.4.3 netmask 255.255.255.0 && ifconfig eth1 214.15.3.18 netmask 255.255.255.248 && 
ifconfig 214.15.3.81 netmask 255.255.255.240) and the socat commands are different (socat 
tcp‐listen:8001,fork tcp:192.168.4.2:80 & socat tcp‐listen:2001,fork tcp:192.168.4.2:22 &) 
 
If you need to reboot the host, be sure to revert guests to the previous saved state before 
starting them up to avoid having to perform the above steps again. 
 
Example: 
COC (10.1.100.166 netmask 255.255.255.0) <‐> WANem <‐> TEP (214.15.3.20 netmask 
255.255.255.248) 
COC2 (10.1.100.29 netmask 255.255.255.0) <‐> WANem <‐> TEP2 (10.1.100.30 netmask 
255.255.255.0) 
 
In this case steps 1 through 14 are pretty much same as before. The only difference is the 
second VM is a bridge and not a router. For the second VM replace step 8 with... 
 
8. Create a bridge (brctl addbr br0) and add interfaces to it (brctl addif br0 eth1 && brctl addif 
br0 eth2). Enable STP (brctl stp br0 on) and turn on the bridge (ifconfig br0 up). You should be 
able to ping across in a few moments. 
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Appendix C – MCTSSA Test Mobile Network Simulation/Emulation  

(by John Segui) 

3.1 Scenario Configuration and Models 

a. Topology 

 

 

Two identical 802.11b wireless subnets were created; each with one Point of Presence 
(POP) node and three wireless clients. One subnet reserved for SharedNet Classic/DTN 
and another for C2PC Native. Terrain was modeled as a flat 1500m X 1500m grid. All 
nodes were at ground level. Two-way path-loss was modeled 

b. Wireless 

All nodes used 802.11b Physical and Link layers in DCF (ad-hoc) mode fixed at 11Mbps 
rate allowing any-to-any communication without a base station. All radios used omni-
directional antennas at a height of 1.5 meters and 15dbm transmit power. 

 

The channel, radio and MAC settings are provided in section 1.3. 
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c. Mobility 

Nodes used a 1 meter position granularity and moved according to the position schedules 
provided in Appendix B. Nodes would drive at speeds necessary to get from point A to 
point B in (timeStampB – timeStampA) seconds. 

 

Full node position schedules are provided in section 1.4. 

d. Network Settings 

Static routes were used. No routing protocol was modeled. IPv4 was modeled with the 
settings in section 1.5. 

3.2 Emulator/Simulator Machine Software Configuration 

a. Operating System 

Debian Etch. Uname output: 

Linux debian 2.6.18-6-686 #1 SMP Thu Nov 5 16:28:13 UTC 2009 i686 GNU/Linux 

b. Java 

Java version "1.5.0_14" 

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_14-b03) 

Java HotSpot(TM) Server VM (build 1.5.0_14-b03, mixed mode) 

c. QualNet 

4.5.1 with the developer, multimedia enterprise, wireless, advanced wireless, urban 
propagation, and IP Network Emulator (IPNE) libraries installed. 

The ipnetworkemulator.cpp source file was extended to allow for simultaneous 
MULTICAST and NAT-NO options in the IPNE. 

d. Network Configuration 

To enable routing on the network emulator box and handle multiple interfaces with 
identical subnet addresses, static routes were added. Different routes were needed for 
SharedNet classic (windows) and SharedNet DTN (Linux) shown in Appendix D. 

e. Machine Configuration 

Each machine participating in the simulated wireless network was directly crossover 
connected to the emulator/simulator machine. Consequently, each machine had to be 
configured to direct all traffic destined for other participants through the 
emulator/simulator. The Windows and Linux routing tables were configured for this. 
Additionally, the Linux virtual machines were configured with iptables rules to translate 
234.1.1.1 multicast traffic to appropriate 225.x.y.z addresses. The 22.5.x.y.z addresses 
were needed to differentiate traffic from/to each node/interface on the emulator machine. 
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The configuration scripts are provided in section 1.6. 

3.3 Radio, Channel and MAC Model Settings 

#Irrelevant configuration lines omitted for brevity 
# ************* Channel *********** 
PROPAGATION-CHANNEL-FREQUENCY 2400000000 
PROPAGATION-MODEL STATISTICAL 
PROPAGATION-LIMIT -111.0 
PROPAGATION-PATHLOSS-MODEL TWO-RAY 
PROPAGATION-SHADOWING-MODEL CONSTANT 
PROPAGATION-SHADOWING-MEAN 4.0 
PROPAGATION-FADING-MODEL NONE 
# ************* Radio/Physical Layer *********** 
PHY-MODEL PHY802.11b 
PHY802.11-AUTO-RATE-FALLBACK NO 
PHY802.11-DATA-RATE 11000000 
PHY802.11b-TX-POWER-11MBPS 15.0 
PHY802.11b-RX-SENSITIVITY-11MBPS -83.0 
PHY-RX-MODEL PHY802.11b 
PHY-TEMPERATURE 290.0 
PHY-NOISE-FACTOR 10.0 
ANTENNA-MODEL OMNIDIRECTIONAL 
ANTENNA-GAIN 0.0 
ANTENNA-HEIGHT 1.5 
ANTENNA-EFFICIENCY 0.8 
ANTENNA-MISMATCH-LOSS 0.3 
ANTENNA-CABLE-LOSS 0.0 
ANTENNA-CONNECTION-LOSS 0.2 
# ************* MAC Protocol *********** 
MAC-PROTOCOL MACDOT11 
MAC-DOT11-DIRECTIONAL-ANTENNA-MODE NO 
MAC-DOT11-SHORT-PACKET-TRANSMIT-LIMIT 7 
MAC-DOT11-LONG-PACKET-TRANSMIT-LIMIT 4 
MAC-DOT11-RTS-THRESHOLD 0 
MAC-DOT11-ASSOCIATION NONE 
MAC-DOT11-IBSS-SUPPORT-PS-MODE NO 
MAC-PROPAGATION-DELAY 1US 
PROMISCUOUS-MODE YES 
 

3.4 – Node Mobility 

Format: nodeNumber timeOfMove (X, Y, Z) 0 0 
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3.4.1 Scenario 0 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (200.0, 600.0, 0.0) 0 0 
3 0 (200.0, 400.0, 0.0) 0 0 
4 0 (300.0, 500.0, 0.0) 0 0 
 
5 0 (1300.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1300.0, 0.0) 0 0 
7 0 (1200.0, 1100.0, 0.0) 0 0 
8 0 (1100.0, 1200.0, 0.0) 0 0 

3.4.2 Scenario 1 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (200.0, 600.0, 0.0) 0 0 
3 0 (200.0, 400.0, 0.0) 0 0 
4 0 (300.0, 500.0, 0.0) 0 0 
5 0 (1300.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1300.0, 0.0) 0 0 
7 0 (1200.0, 1100.0, 0.0) 0 0 
8 0 (1100.0, 1200.0, 0.0) 0 0 
2 10M (200.0, 600.0, 0.0) 0 0 
2 11M (600.0, 600.0, 0.0) 0 0 
2 15M (600.0, 600.0, 0.0) 0 0 
2 16M (200.0, 600.0, 0.0) 0 0 
6 10M (1200.0, 1300.0, 0.0) 0 0 
6 11M (800.0, 1300.0, 0.0) 0 0 
6 15M (800.0, 1300.0, 0.0) 0 0 
6 16M (1200.0, 1300.0, 0.0) 0 0 

3.4.3 Scenario 2 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (200.0, 600.0, 0.0) 0 0 
3 0 (200.0, 400.0, 0.0) 0 0 
4 0 (300.0, 500.0, 0.0) 0 0 
5 0 (1300.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1300.0, 0.0) 0 0 
7 0 (1200.0, 1100.0, 0.0) 0 0 
8 0 (1100.0, 1200.0, 0.0) 0 0 
2 10M (200.0, 600.0, 0.0) 0 0 
2 11M (600.0, 600.0, 0.0) 0 0 
2 15M (600.0, 600.0, 0.0) 0 0 
2 16M (400.0, 600.0, 0.0) 0 0 
6 10M (1200.0, 1300.0, 0.0) 0 0 
6 11M (800.0, 1300.0, 0.0) 0 0 
6 15M (800.0, 1300.0, 0.0) 0 0 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

56 

6 16M (1000.0, 1300.0, 0.0) 0 0 

3.4.4 Scenario 3 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (200.0, 600.0, 0.0) 0 0 
3 0 (200.0, 400.0, 0.0) 0 0 
4 0 (300.0, 500.0, 0.0) 0 0 
5 0 (1300.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1300.0, 0.0) 0 0 
7 0 (1200.0, 1100.0, 0.0) 0 0 
8 0 (1100.0, 1200.0, 0.0) 0 0 
2 10M (200.0, 600.0, 0.0) 0 0 
2 11M (500.0, 500.0, 0.0) 0 0 
2 15M (500.0, 500.0, 0.0) 0 0 
2 16M (700.0, 500.0, 0.0) 0 0 
3 15M (200.0, 400.0, 0.0) 0 0 
3 16M (300.0, 500.0, 0.0) 0 0 
4 15M (300.0, 500.0, 0.0) 0 0 
4 16M (500.0, 500.0, 0.0) 0 0 
6 10M (1200.0, 1300.0, 0.0) 0 0 
6 11M (900.0, 1200.0, 0.0) 0 0 
6 15M (900.0, 1200.0, 0.0) 0 0 
6 16M (700.0, 1200.0, 0.0) 0 0 
7 15M (1200.0, 1100.0, 0.0) 0 0 
7 16M (1100.0, 1200.0, 0.0) 0 0 
8 15M (1100.0, 1200.0, 0.0) 0 0 
8 16M (900.0, 1200.0, 0.0) 0 0 

3.4.5 Scenario 4 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (300.0, 500.0, 0.0) 0 0 
3 0 (500.0, 500.0, 0.0) 0 0 
4 0 (700.0, 500.0, 0.0) 0 0 
5 0 (1400.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1200.0, 0.0) 0 0 
7 0 (1000.0, 1200.0, 0.0) 0 0 
8 0 (800.0, 1200.0, 0.0) 0 0 
4 7M (700.0, 500.0, 0.0) 0 0 
4 7.5M (900.0, 500.0, 0.0) 0 0 
4 9M (900.0, 500.0, 0.0) 0 0 
4 9.5M (1100.0, 500.0, 0.0) 0 0 
4 11M (1100.0, 500.0, 0.0) 0 0 
4 11.5M (1300.0, 500.0, 0.0) 0 0 
3 9M (500.0, 500.0, 0.0) 0 0 
3 9.5M (700.0, 500.0, 0.0) 0 0 
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3 11M (700.0, 500.0, 0.0) 0 0 
3 11.5M (900.0, 500.0, 0.0) 0 0 
3 13M (900.0, 500.0, 0.0) 0 0 
3 13.5M (1100.0, 500.0, 0.0) 0 0 
2 11M (300.0, 500.0, 0.0) 0 0 
2 11.5M (500.0, 500.0, 0.0) 0 0 
2 13M (500.0, 500.0, 0.0) 0 0 
2 13.5M (600.0, 500.0, 0.0) 0 0 
2 15M (600.0, 500.0, 0.0) 0 0 
2 15.5M (900.0, 500.0, 0.0) 0 0 
1 13M (100.0, 500.0, 0.0) 0 0 
1 13.5M (200.0, 500.0, 0.0) 0 0 
1 15M (200.0, 500.0, 0.0) 0 0 
1 15.5M (300.0, 500.0, 0.0) 0 0 
1 17M (300.0, 500.0, 0.0) 0 0 
1 17.5M (700.0, 500.0, 0.0) 0 0 
8 7M (800.0, 1200.0, 0.0) 0 0 
8 7.5M (600.0, 1200.0, 0.0) 0 0 
8 9M (600.0, 1200.0, 0.0) 0 0 
8 9.5M (400.0, 1200.0, 0.0) 0 0 
8 11M (400.0, 1200.0, 0.0) 0 0 
8 11.5M (200.0, 1200.0, 0.0) 0 0 
7 9M (1000.0, 1200.0, 0.0) 0 0 
7 9.5M (800.0, 1200.0, 0.0) 0 0 
7 11M (800.0, 1200.0, 0.0) 0 0 
7 11.5M (600.0, 1200.0, 0.0) 0 0 
7 13M (600.0, 1200.0, 0.0) 0 0 
7 13.5M (400.0, 1200.0, 0.0) 0 0 
6 11M (1200.0, 1200.0, 0.0) 0 0 
6 11.5M (1000.0, 1200.0, 0.0) 0 0 
6 13M (1000.0, 1200.0, 0.0) 0 0 
6 13.5M (900.0, 1200.0, 0.0) 0 0 
6 15M (900.0, 1200.0, 0.0) 0 0 
6 15.5M (600.0, 1200.0, 0.0) 0 0 
5 13M (1400.0, 1200.0, 0.0) 0 0 
5 13.5M (1300.0, 1200.0, 0.0) 0 0 
5 15M (1300.0, 1200.0, 0.0) 0 0 
5 15.5M (1200.0, 1200.0, 0.0) 0 0 
5 17M (1200.0, 1200.0, 0.0) 0 0 
5 17.5M (800.0, 1200.0, 0.0) 0 0 

3.4.6 Scenario 5 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (300.0, 450.0, 0.0) 0 0 
3 0 (500.0, 500.0, 0.0) 0 0 
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4 0 (700.0, 500.0, 0.0) 0 0 
5 0 (1400.0, 1200.0, 0.0) 0 0 
6 0 (1200.0, 1150.0, 0.0) 0 0 
7 0 (1000.0, 1200.0, 0.0) 0 0 
8 0 (800.0, 1200.0, 0.0) 0 0 
4 7M (700.0, 500.0, 0.0) 0 0 
4 7.5M (1300.0, 500.0, 0.0) 0 0 
4 15M (1300.0, 500.0, 0.0) 0 0 
4 15.5M (1100.0, 500.0, 0.0) 0 0 
4 17M (1100.0, 500.0, 0.0) 0 0 
4 17.5M (300.0, 550.0, 0.0) 0 0 
3 9M (500.0, 500.0, 0.0) 0 0 
3 9.5M (1100.0, 500.0, 0.0) 0 0 
3 11M (1100.0, 500.0, 0.0) 0 0 
3 11.5M (500.0, 500.0, 0.0) 0 0 
3 13M (500.0, 500.0, 0.0) 0 0 
3 13.5M (1100.0, 500.0, 0.0) 0 0 
3 15M (1100.0, 500.0, 0.0) 0 0 
3 15.5M (500.0, 500.0, 0.0) 0 0 
8 7M (800.0, 1200.0, 0.0) 0 0 
8 7.5M (200.0, 1200.0, 0.0) 0 0 
8 15M (200.0, 1200.0, 0.0) 0 0 
8 15.5M (400.0, 1200.0, 0.0) 0 0 
8 17M (400.0, 1200.0, 0.0) 0 0 
8 17.5M (1200.0, 1250.0, 0.0) 0 0 
7 9M (1000.0, 1200.0, 0.0) 0 0 
7 9.5M (400.0, 1200.0, 0.0) 0 0 
7 11M (400.0, 1200.0, 0.0) 0 0 
7 11.5M (1000.0, 1200.0, 0.0) 0 0 
7 13M (1000.0, 1200.0, 0.0) 0 0 
7 13.5M (500.0, 1200.0, 0.0) 0 0 
7 15M (500.0, 1200.0, 0.0) 0 0 
7 15.5M (1000.0, 1200.0, 0.0) 0 0 

3.4.7 Scenario 6 (combination of scenarios 3 and 4) 

1 0 (100.0, 500.0, 0.0) 0 0 
2 0 (200.0, 400.0, 0.0) 0 0 
3 0 (300.0, 500.0, 0.0) 0 0 
4 0 (200.0, 600.0, 0.0) 0 0 
5 0 (1400.0, 1200.0, 0.0) 0 0 
6 0 (1300.0, 1100.0, 0.0) 0 0 
7 0 (1200.0, 1200.0, 0.0) 0 0 
8 0 (1300.0, 1300.0, 0.0) 0 0 
2 5M (200.0, 400.0, 0.0) 0 0 
2 5.5M (300.0, 500.0, 0.0) 0 0 
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3 5M (300.0, 500.0, 0.0) 0 0 
3 5.5M (500.0, 500.0, 0.0) 0 0 
4 3M (200.0, 600.0, 0.0) 0 0 
4 3.5M (500.0, 500.0, 0.0) 0 0 
4 5M (500.0, 500.0, 0.0) 0 0 
4 5.5M (700.0, 500.0, 0.0) 0 0 
4 7M (700.0, 500.0, 0.0) 0 0 
4 7.5M (900.0, 500.0, 0.0) 0 0 
4 9M (900.0, 500.0, 0.0) 0 0 
4 9.5M (1100.0, 500.0, 0.0) 0 0 
4 11M (1100.0, 500.0, 0.0) 0 0 
4 11.5M (1300.0, 500.0, 0.0) 0 0 
3 9M (500.0, 500.0, 0.0) 0 0 
3 9.5M (700.0, 500.0, 0.0) 0 0 
3 11M (700.0, 500.0, 0.0) 0 0 
3 11.5M (900.0, 500.0, 0.0) 0 0 
3 13M (900.0, 500.0, 0.0) 0 0 
3 13.5M (1100.0, 500.0, 0.0) 0 0 
2 11M (300.0, 500.0, 0.0) 0 0 
2 11.5M (500.0, 500.0, 0.0) 0 0 
2 13M (500.0, 500.0, 0.0) 0 0 
2 13.5M (600.0, 500.0, 0.0) 0 0 
2 15M (600.0, 500.0, 0.0) 0 0 
2 15.5M (900.0, 500.0, 0.0) 0 0 
1 13M (100.0, 500.0, 0.0) 0 0 
1 13.5M (200.0, 500.0, 0.0) 0 0 
1 15M (200.0, 500.0, 0.0) 0 0 
1 15.5M (300.0, 500.0, 0.0) 0 0 
1 17M (300.0, 500.0, 0.0) 0 0 
1 17.5M (700.0, 500.0, 0.0) 0 0 
6 5M (1300.0, 1100.0, 0.0) 0 0 
6 5.5M (1200.0, 1200.0, 0.0) 0 0 
7 5M (1200.0, 1200.0, 0.0) 0 0 
7 5.5M (1000.0, 1200.0, 0.0) 0 0 
8 3M (1300.0, 1300.0, 0.0) 0 0 
8 3.5M (1000.0, 1200.0, 0.0) 0 0 
8 5M (1000.0, 1200.0, 0.0) 0 0 
8 5.5M (800.0, 1200.0, 0.0) 0 0 
8 7M (800.0, 1200.0, 0.0) 0 0 
8 7.5M (600.0, 1200.0, 0.0) 0 0 
8 9M (600.0, 1200.0, 0.0) 0 0 
8 9.5M (400.0, 1200.0, 0.0) 0 0 
8 11M (400.0, 1200.0, 0.0) 0 0 
8 11.5M (200.0, 1200.0, 0.0) 0 0 
7 9M (1000.0, 1200.0, 0.0) 0 0 
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7 9.5M (800.0, 1200.0, 0.0) 0 0 
7 11M (800.0, 1200.0, 0.0) 0 0 
7 11.5M (600.0, 1200.0, 0.0) 0 0 
7 13M (600.0, 1200.0, 0.0) 0 0 
7 13.5M (400.0, 1200.0, 0.0) 0 0 
6 11M (1200.0, 1200.0, 0.0) 0 0 
6 11.5M (1000.0, 1200.0, 0.0) 0 0 
6 13M (1000.0, 1200.0, 0.0) 0 0 
6 13.5M (900.0, 1200.0, 0.0) 0 0 
6 15M (900.0, 1200.0, 0.0) 0 0 
6 15.5M (600.0, 1200.0, 0.0) 0 0 
5 13M (1400.0, 1200.0, 0.0) 0 0 
5 13.5M (1300.0, 1200.0, 0.0) 0 0 
5 15M (1300.0, 1200.0, 0.0) 0 0 
5 15.5M (1200.0, 1200.0, 0.0) 0 0 
5 17M (1200.0, 1200.0, 0.0) 0 0 
5 17.5M (800.0, 1200.0, 0.0) 0 0 

3.5 Network Model Settings 

NETWORK-PROTOCOL IP 
IP-ENABLE-LOOPBACK YES 
IP-LOOPBACK-ADDRESS 127.0.0.1 
IP-FRAGMENTATION-UNIT 2048 
IP-QUEUE-NUM-PRIORITIES 3 
IP-QUEUE-PRIORITY-INPUT-QUEUE-SIZE 50000 
DUMMY-PRIORITY-QUEUE-SIZE NO 
IP-QUEUE-PRIORITY-QUEUE-SIZE 50000 
DUMMY-PRIORITY-WISE-IP-QUEUE-TYPE NO 
IP-QUEUE-TYPE FIFO 
ECN NO 
IP-QUEUE-SCHEDULER STRICT-PRIORITY 
 

3.6 Machine Configuration Scripts 

3.6.1 Emulator/Simulator SharedNet Classic Configuration Script 

route add default gw 192.168.3.1 
echo "#Added by /root/setupEmulatorClassic.sh" > /etc/resolv.conf 
echo "nameserver 4.2.2.1" >> /etc/resolv.conf 
#MIP 
route add 214.15.3.105 dev eth5 
route add 214.15.3.106 dev eth5 
route del 225.0.10.1 
route add 225.0.10.1 gw 214.15.3.105 
#MOBILE1 
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route add 214.15.3.103 dev eth6 
route add 214.15.3.104 dev eth6 
route del 225.0.10.2 
route add 225.0.10.2 gw 214.15.3.103 
#MOBILE2 
route add 214.15.3.101 dev eth7 
route add 214.15.3.102 dev eth7 
route del 225.0.10.3 
route add 225.0.10.3 gw 214.15.3.101 
#MOBILE3 
route add 214.15.3.99 dev eth8 
route add 214.15.3.100 dev eth8 
route del 225.0.10.4 
route add 225.0.10.4 gw 214.15.3.99 
 
#POP2 
route add 10.1.101.1 dev eth2 
route add 225.0.11.1 gw 10.1.101.1 
#Mobile4 
route add 10.1.101.2 dev eth3 
route add 225.0.11.2 gw 10.1.101.2 
#Mobile5 
route add 10.1.101.3 dev eth4 
route add 225.0.11.3 gw 10.1.101.3 
#Mobile6 
route add 10.1.101.4 dev eth11 
route add 225.0.11.4 gw 10.1.101.4 

3.6.2 Emulator/Simulator Machine SharedNet DTN Configuration Script 

route add default gw 192.168.3.1 
echo "#Added by /root/setupEmulatorDTN.sh" > /etc/resolv.conf 
echo "nameserver 4.2.2.1" >> /etc/resolv.conf 
#MIP 
route add 214.15.3.105 dev eth5 
route add 214.15.3.106 dev eth5 
route del 225.0.10.1 
route add 225.0.10.1 gw 214.15.3.106 
#MOBILE1 
route add 214.15.3.103 dev eth6 
route add 214.15.3.104 dev eth6 
route del 225.0.10.2 
route add 225.0.10.2 gw 214.15.3.104 
#MOBILE2 
route add 214.15.3.101 dev eth7 
route add 214.15.3.102 dev eth7 
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route del 225.0.10.3 
route add 225.0.10.3 gw 214.15.3.102 
#MOBILE3 
route add 214.15.3.99 dev eth8 
route add 214.15.3.100 dev eth8 
route del 225.0.10.4 
route add 225.0.10.4 gw 214.15.3.100 
#POP2 
route add 10.1.101.1 dev eth2 
route add 225.0.11.1 gw 10.1.101.1 
#Mobile4 
route add 10.1.101.2 dev eth3 
route add 225.0.11.2 gw 10.1.101.2 
#Mobile5 
route add 10.1.101.3 dev eth4 
route add 225.0.11.3 gw 10.1.101.3 
#Mobile6 
route add 10.1.101.4 dev eth11 
route add 225.0.11.4 gw 10.1.101.4 

3.6.3 Client Machine (MOBILE2) DTN Configuration Script 

#route add 225.0.10.2 gw 214.15.3.109 
route add 214.15.3.106 gw 214.15.3.109 
route add 214.15.3.104 gw 214.15.3.109 
route add 214.15.3.100 gw 214.15.3.109 
route add 234.1.1.1 gw 214.15.3.109 
iptables -t nat -A OUTPUT -d 234.1.1.1 -j DNAT --to-destination 225.0.10.3 
iptables -t nat -A PREROUTING -d 225.0.10.3 -j DNAT --to-destination 234.1.1.1 

3.6.4 Client Machine (MOBILE2) Classic Configuration Script 

route add 214.15.3.105 mask 255.255.255.255 214.15.3.109 
route add 214.15.3.103 mask 255.255.255.255 214.15.3.109 
route add 214.15.3.99 mask 255.255.255.255 214.15.3.109 
route add 225.0.10.3 mask 255.255.255.255 214.15.3.109 

3.7 Emulator/Simulator Running Kernel Modules (lsmod) 

Module                  Size  Used by 
nls_iso8859_1           4256  1  
nls_cp437               5920  1  
vfat                   11872  1  
fat                    46652  1 vfat 
usb_storage            72000  1  
nvidia               8881444  28  
agpgart                29896  1 nvidia 
ppdev                   8676  0  
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parport_pc             32132  0  
lp                     11012  0  
parport                33256  3 ppdev,parport_pc,lp 
button                  6672  0  
ac                      5188  0  
battery                 9636  0  
ipv6                  226304  22  
dm_snapshot            15552  0  
dm_mirror              19152  0  
dm_mod                 50200  2 dm_snapshot,dm_mirror 
sbp2                   20840  0  
ieee1394               86904  1 sbp2 
loop                   15048  0  
snd_hda_intel          17332  0  
snd_hda_codec         137856  1 snd_hda_intel 
snd_pcm_oss            38368  0  
snd_mixer_oss          15200  1 snd_pcm_oss 
snd_pcm                68676  3 snd_hda_intel,snd_hda_codec,snd_pcm_oss 
snd_timer              20996  1 snd_pcm 
asix                   10400  0  
usbnet                 15464  1 asix 
i2c_i801                7468  0  
serio_raw               6660  0  
snd                    47012  6 
snd_hda_intel,snd_hda_codec,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_timer 
shpchp                 33024  0  
pci_hotplug            28704  1 shpchp 
nxge                  459456  0  
pcspkr                  3072  0  
i2c_core               19680  2 nvidia,i2c_i801 
psmouse                35016  0  
soundcore               9248  1 snd 
snd_page_alloc         10184  2 snd_hda_intel,snd_pcm 
tsdev                   7520  0  
evdev                   9088  1  
rtc                    12372  0  
sg                     31292  0  
sr_mod                 15876  0  
cdrom                  32544  1 sr_mod 
ext3                  119336  1  
jbd                    52456  1 ext3 
mbcache                 8356  1 ext3 
sd_mod                 19040  4  
usbhid                 37248  0  
generic                 4868  0 [permanent] 



DARPA DTN Core Engineering  
Support Task, Phase 3 Report 

30 April 2010 
 

64 

ahci                   17924  2  
libata                 89396  1 ahci 
e100                   32232  0  
scsi_mod              124168  7 usb_storage,sbp2,sg,sr_mod,sd_mod,ahci,libata 
piix                    9444  0 [permanent] 
ide_core              110504  3 usb_storage,generic,piix 
mii                     5344  2 asix,e100 
ehci_hcd               28136  0  
uhci_hcd               21164  0  
usbcore               112644  7 usb_storage,asix,usbnet,usbhid,ehci_hcd,uhci_hcd 
tg3                    94948  0  
thermal                13608  0  
processor              28840  1 thermal 
fan                     4804  0  
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Appendix D - SharedNet Configuration Data  

– The following information documents the software versions and Windows environment 
variables used in the MCTSSA testing: 

 
Java version: 1.6.0_15 
 
SharedNet version: 6.7.1.55.DTN 
 
Environment variables: 
 
# Needed unless localhost: address of BPA 
DTNAPI_ADDR=IP address of BPA 
 
# Or equivalent for Linux: main SN directory 
SHAREDNET_HOME='C:\Progra~1\SharedNet' 
 
# Force custody transfer on 
SN_DTN_CUSTODY=true 
 
# Or equivalent for Linux: Java to use for SN 
SN_JAVA_HOME='C:\Progra~1\Java\jdk1.6.0_15' 
 
# Turn on high level of logging 
SN_LOG_LEVEL=DEBUG 
 
# Or equivalent: location of MySQL; needed only for hosts running servers 
SN_MYSQL_HOME='C:\Progra~1\mysql' 
 
# IP address corresponding to host DNS entry 
SN_PRIMARY_INTERFACE=IP address 
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Appendix E – MCTSSA Satcom Simulation Scripts 

The scripts below were used to start the WANem and Linktrophy simulators that were 
used to simulate the two satellite hops for the MCTSSA testing. In the testing, all four 
satellite emulations were started simultaneously via Linux shell script that from the 
Administrative computer, so their start times were consistent for every test. 

 

There was no way to seed the random number generators that governed the loss models 
in each emulator, but the overall aggregate loss statistics were as depicted in the plots 
shown in previous sections of this report.  

 

The delay through a geostationary satellite due to one-way light time is about 300 ms, 
and the WANem simulators used this value. The Linktrophy 4500 simulators were 
programmed to additionally add modem processing and local network delays to the 
satellite light time delay, and per MCTSSA recommendation, a 600 ms delay was used.  

 

Adding modem and other delays to the WANem emulation was unintentionally 
overlooked. It is not expected to change the conclusions or results, as the C2PC or SN 
systems are relatively insensitive to +/- 300ms differences in delay, but highly sensitive 
to disruption and loss, which were adequately modeled by these simulators.  

3.1 WANem Script (wanemscript1.sh) 

#!/bin/bash 
 
STARTDELAY=20 
# This variable is used by the stagin.sh script, and MUST be exported 
 
echo "Starting 20 minute test run" 
 
tc qdisc del dev eth1 root 
tc qdisc add dev eth1 root handle 1: netem delay 300ms loss 0.5% 
tc qdisc add dev eth1 parent 1:1 handle 10: htb default 1 r2q 10 
tc class add dev eth1 parent 10: classid 0:1 htb rate 2048kbit ceil 2048kbit 
 
tc qdisc del dev eth2 root 
tc qdisc add dev eth2 root handle 1: netem delay 300ms loss 0.5% 
tc qdisc add dev eth2 parent 1:1 handle 10: htb default 1 r2q 10 
tc class add dev eth2 parent 10: classid 0:1 htb rate 2048kbit ceil 2048kbit 
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echo "Links configured, waiting for $STARTDELAY seconds to begin test" 
sleep $STARTDELAY 
 
echo "starting 20 minute run; no loss for 6 minutes" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 0.5% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 0.5% 
sleep 360 
 
echo "40% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 40% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 40% 
sleep 60 
 
echo "80% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 80% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 80% 
sleep 60 
 
echo "20% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 20% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 20% 
sleep 60 
 
echo "0% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 0.5% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 0.5% 
sleep 60 
 
echo "50% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 50% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 50% 
sleep 60 
 
echo "20% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 20% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 20% 
sleep 60 
 
echo "95% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 95% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 95% 
sleep 60 
 
echo "100% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 100% 
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tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 100% 
sleep 60 
 
echo "50% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 50% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 50% 
sleep 60 
 
echo "20% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 20% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 20% 
sleep 60 
 
echo "30% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 30% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 30% 
sleep 60 
 
echo "10% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 10% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 10% 
sleep 60 
 
echo "5% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 5% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 5% 
sleep 60 
 
echo "0% loss" 
tc qdisc change dev eth1 root handle 1: netem delay 300ms loss 0.5% 
tc qdisc change dev eth2 root handle 1: netem delay 300ms loss 0.5% 
sleep 60 
 
 
 
 
echo "Test complete" 
 

3.2 Linktrophy Start Script (C2PClink.exp) 

#!/usr/bin/expect -f 
# 
# This Expect script was generated by autoexpect on Mon Feb 22 
08:04:30 2010 
# Expect and autoexpect were both written by Don Libes, NIST. 
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# 
# Note that autoexpect does not guarantee a working script.  It 
# necessarily has to guess about certain things.  Two reasons a script 
# might fail are: 
# 
# 1) timing - A surprising number of programs (rn, ksh, zsh, telnet, 
# etc.) and devices discard or ignore keystrokes that arrive "too 
# quickly" after prompts.  If you find your new script hanging up at 
# one spot, try adding a short sleep just before the previous send. 
# Setting "force_conservative" to 1 (see below) makes Expect do this 
# automatically - pausing briefly before sending each character.  This 
# pacifies every program I know of.  The -c flag makes the script do 
# this in the first place.  The -C flag allows you to define a 
# character to toggle this mode off and on. 
 
set force_conservative 0  ;# set to 1 to force conservative mode even if 
     ;# script wasn't run conservatively originally 
if {$force_conservative} { 
 set send_slow {1 .1} 
 proc send {ignore arg} { 
  sleep .1 
  exp_send -s -- $arg 
 } 
} 
 
# 
# 2) differing output - Some programs produce different output each time 
# they run.  The "date" command is an obvious example.  Another is 
# ftp, if it produces throughput statistics at the end of a file 
# transfer.  If this causes a problem, delete these patterns or replace 
# them with wildcards.  An alternative is to use the -p flag (for 
# "prompt") which makes Expect only look for the last line of output 
# (i.e., the prompt).  The -P flag allows you to define a character to 
# toggle this mode off and on. 
# 
# Read the man page for more info. 
# 
# -Don 
 
 
set timeout -1 
spawn telnet 192.168.3.98 
match_max 100000 
expect -exact "Trying 192.168.3.98...\r\r 
Connected to 192.168.3.98.\r\r 
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Escape character is '^\]'.\r\r 
\r\r 
linktropy login: " 
send -- "admin\r" 
expect -exact "admin\r 
C2PC> " 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss 0%" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss 0%" 
send -- "\r" 
expect -exact "\r\r 
C2PC> " 
sleep 360 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss 0%" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss 0%" 
send -- " " 
expect - � �exact " \[K" 
send -- " " 
expect - � �exact " \[K" 
send -- "30%\r" 
expect -exact "30%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 0.5%\r" 
expect -exact " 0.5%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 10%\r" 
expect -exact " 10%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 20%\r" 
expect -exact " 20%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 100%\r" 
expect -exact " 100%\r\r 
C2PC> " 
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sleep 120 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 20%\r" 
expect -exact " 20%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 10%\r" 
expect -exact " 10%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 0.5%\r" 
expect -exact " 0.5%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 80%\r" 
expect -exact " 80%\r\r 
C2PC> " 
sleep 120 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 30%\r" 
expect -exact " 30%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 15%\r" 
expect -exact " 15%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
send -- " 5%\r" 
expect -exact " 5%\r\r 
C2PC> " 
sleep 60 
send -- "link 1 set bandwidth 2000000 delay constant 600 loss" 
expect -exact "link 1 set bandwidth 2000000 delay constant 600 loss" 
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send -- " 0%\r" 
expect -exact " 0%\r\r 
C2PC> " 
send -- "exit\r" 
expect eof 
 

 


